Acute toxicity of methyl-parathion in wetland mesocosms: assessing the influence of aquatic plants using laboratory testing with Hyalella azteca.
نویسندگان
چکیده
Methyl-parathion (MeP) was introduced into constructed wetlands for the purpose of assessing the importance of distance from the source of contamination and the role of emergent vegetation on the acute toxicity to Hyalella azteca (Crustacea: Amphipoda). A vegetated (90% cover: mainly Juncus effuses) and a nonvegetated wetland (each with a water body of 50 x 5.5 x 0.2 m) were each exposed to a simulated MeP storm runoff event. H. azteca was exposed for 48 h in the laboratory to water samples taken from the wetlands at a distance of 5, 10, 20, and 40 m from the pesticide inlet 3 h, 24 h, 96 h, and 10 days following application. Methyl-parathion was detected throughout the nonvegetated wetland, whereas the pesticide was only transported halfway through the vegetated wetland. A repeated-measure three-way analysis of variance (ANOVA) using time, location, and vegetation indicated significantly lower toxicity in the vegetated wetland. Furthermore, the mortality decreased significantly with both increasing distance from the inlet and time (48-h LC50 +/- 95% CI: 9.0 +/- 0.3 microg/L). A significant three-way interaction of time x vegetation x location confirmed higher toxicity at the inlet area of the nonvegetated wetland immediately after contamination. Significant linear regressions of maximum mortality (independent of time) versus distance from the pesticide inlet indicated that 44 m of vegetated and 111 m of nonvegetated wetland would reduce H. azteca mortality to < or = 5%. These results suggest that vegetation contributes to reduced MeP effects in constructed wetlands.
منابع مشابه
Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms.
Wetland ecosystems have reduced ambient levels of various organic and metallic compounds, although their effectiveness on agricultural pesticides is not well documented. Five stations within each of two 10 x 50 m constructed wetlands (two vegetated, two nonvegetated) were selected to measure the fate and effects of methyl parathion (MeP). Following a simulated storm event (0.64 cm of rainfall),...
متن کاملA comparison of chronic cadmium effects on Hyalella azteca in effluent-dominated stream mesocosms to similar laboratory exposures in effluent and reconstituted hard water.
Laboratory single-species toxicity tests are used to assess the effects of contaminants on aquatic biota. Questions remain as to how accurately these toxicity tests predict site-specific bioavailability and chronic effects of metals, particularly in streams that are effluent-dominated or dependent on effluent discharge for flow. Concurrent 42-d Hyalella azteca exposures were performed with cadm...
متن کاملToxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca
Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in ...
متن کاملInfluence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca.
Pyrethroid insecticides are known for their potential toxicity to aquatic invertebrates and many fish species. A significant problem in the study of pyrethroid toxicity is their extreme hydrophobicity. They can adsorb to test container surfaces and many studies, therefore, report pyrethroid levels as nominal water concentrations. In this study, pyrethroid adsorption to sampling and test contain...
متن کاملDo Varying Aquatic Plant Species Affect Phytoplankton and Crustacean Responses to a Nitrogen-Permethrin Mixture?
Hydraulically connected wetland microcosms vegetated with either Typha latifolia or Myriophyllum aquaticum were amended with an NH4NO3 and permethrin mixture to assess the effectiveness of both plant species in mitigating effects of the pollutant mixture on phytoplankton (as chlorophyll a) and Hyalella azteca. Phytoplankton grew in response to increased NH4NO3 in the presence of all plant speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of environmental contamination and toxicology
دوره 45 3 شماره
صفحات -
تاریخ انتشار 2003